Fathalla Ali Rihanning

fan doktori (DSc) dissertatsiyasi himoyasi haqida e’lon

 

I. Umumiy ma’lumotlar.

Dissertatsiya mavzusi, ixtisoslik shifri (ilmiy daraja beriladigan fan tarmog‘i nomi): «Xotirali differensial tenglamalarning sifat va miqdoriy jihatlari va ularning tatbiqlari», 05.01.07–Matematik modellashtirish. Sonli usullar va dasturlar majmuasi (fizika-matematika fanlari).

Dissertatsiya bajarilgan muassasa nomi: Birlashgan Arab Amirliklari universiteti va Matematika instituti.

Ilmiy maslahatchi: Azamov Abdulla, fizika-matematika fanlari doktori, professor, akademik.

IK faoliyat ko‘rsatayotgan muassasa nomi, IK raqami: O‘zbekiston Milliy universiteti, DSc.27.06.2017.FM.01.02.

Rasmiy opponentlar: Adilova Fatima Tuychievna, fizika-matematika fanlari doktori, professor; Xujayarov Baxtiyar, fizika-matematika fanlari doktori, professor; Rozikov O‘tkir Abdulloevich, fizika-matematika fanlari doktori, professor.

Yetakchi tashkilot: Toshkent temir yo‘l muhandislari instituti.

Dissertatsiya yo‘nalishi: nazariy va amaliy ahamiyatga molik.

II. Tadqiqotning maqsadi: butun va kasr tartibli kechikuvchi differensial tenglamalar ko‘rinishidagi matematik modellarni qurish,  kechikuvli va kasr tartibli differensial tenglamalar echimlarining turg‘unligi uchun yangi etarli shartlar olish va taqribiy sonli echish usullarini ishlab chiqish hamda sonli echish dasturiy vositalarini yaratishdan iborat.

III. Tadqiqotning ilmiy yangiligi:

biosistemalar dinamikasi tahlili uchun oddiy va taqsimlangan kechikuvchi differensial tenglamalar, kasr tartibli oddiy hamda kasr tartibli xususiy hosilali tenglamalar vositasida yangi matematik modellar qurilgan;

vaqt bo‘yicha kechikish hisobga olingan matematik modellar bu omilni hisobga olmagan matematik modellarga nisbatan jarayonlarni aniqroq aks ettirishi ko‘rsatilgan;

kechikuvli differensial tenglamalarni echishning samarali usullari– Runge-Kutta metodi uchun nooshkor sxemalar ishlab chiqilgan, sonli metodlar turg‘unligini ta’minlovchi yangi kriteriylar topilgan;

 matematik modellarning parametrlari qo‘zg‘atilganda va «oq shovqin» tarzidagi tasodifiy chetlashishlarga nisbatan sezgirligini baholash usuli ishlab chiqilgan;

membranali VAM-neyron to‘rlari, kompleks qiymatli neyron to‘rlari, Koxen–Krossberg neyron to‘rlari hamda kasr hosilali neyron to‘rlari uchun sinxronlashtirish, turg‘unlik va dissipativlikni tekshirish usullari ishlab chiqilgan;

Koxen-Krossberg VAM-neyron to‘rlarini turg‘un bo‘lmagan holda stabillashtirish algoritmi qurilgan.

IV. Tadqiqot natijalarining joriy qilinishi.

Xotirali differensial tenglamalarning sifat va miqdoriy jihatlari hamda kechikuvchi differensial tenglamalar uchun qo‘yilgan chegaraviy masalalarni sonli echish asosida:

chiziqli bo‘lmagan kechikuvchi differensial tenglamalarni sonli echish usullari 301 raqamli «Simulation of Radiation Effects in the Central Nervous System» grant loyihasida kechikuvchi differensial tenglamalar echimlarining turg‘unligini isbotlashda foydalanilgan (Qohira universitetining 2018 yil 1 apreldagi ma’lumotnomasi). Ilmiy natijalarning qo‘llanilishi sil bilan og‘rigan bemorlarda fiziologik jarayon kechikishini prognoz qilish usulini yaratishga imkon bergan;

matematik modellarning parametrlari qo‘zg‘atilganda va «oq shovqin» tarzidagi tasodifiy chetlashishlarga nisbatan sezgirligini baholash usuli 2009/2010 raqamli «Epidemiology of Swine flu H1N1 pandemic» grant loyihasida S gepatit virusi dinamikasini parametr bo‘yicha baholashda qo‘llanilgan (Birlashgan Arab Amirliklari universitetining 2018 yil 14 maydagi ma’lumotnomasi). Ilmiy natijalarning qo‘llanilishi H1N1 tipli pandemik yuqumli grippning tarqalishi jarayonini prognoz qilish uchun tegishli tavsiyalar ishlab chiqish imkonini bergan;

membranali VAM-neyron to‘rlari, kompleks qiymatli neyron to‘rlari, Koxen–Krossberg neyron to‘rlari hamda kasr hosilali neyron to‘rlari uchun sinxronlashtirish, turg‘unlik va dissipativlikni tekshirish usullari immun jarayonlarni matematik modellashtirishda foydalanilgan (Rossiya Fanlar akademiyasi Hisoblash matematikasi institutining 2018 yil 13 apreldagi 10256/75-son ma’lumotnomasi). Ilmiy natijalarning qo‘llanilishi klinik ko‘rsatuvlar natijasida to‘plangan ma’lumotlar bazasini tasniflash imkonini bergan;

Koxen-Krossberg VAM-neyron to‘rlarini turg‘un bo‘lmagan holda stabillashtirish algoritmi xorijiy ilmiy jurnallarda (Hindawi, Complexity, Volume 2017, Article ID 6875874, 13 pages; Neural Processing Letters, Springer, 2018, pp. 1-19; Journal Neural Networks, vol. 98, pp. 223-235; Numerical Algorithms, vol. 79, issue 1, 2018, pp. 19-40; International Journal of Dynamics and Control, 2018, pp. 1-9) impul`sli va kechikuvchi kasr tartibli Riman-Liuvill VAM gibrit neyron to‘rlari echimining mavjudligini va global` asimptotik turg‘unligini isbotlashda foydalanilgan. Ilmiy natijalardan foydalanish VAM gibrit neyron to‘rlarining parametrlariga bog‘liq muvozanat echimining global` asimptotik turg‘unlik kriteriyalarini ishlab chiqishga xizmat qilgan;

biosistemalar dinamikasining tahlili uchun oddiy va taqsimlangan kechikuvchi differensial tenglamalar, kasr tartibli oddiy hamda kasr tartibli xususiy hosilali tenglamalar vositasida qurilgan matematik modellardan xorijiy ilmiy jurnallarda (Applied Mathematics and Computation, Vol. 293, 2017, pp. 293-310; Journal of Inequalities and Applications, 2014, pp. 1-14; Communications in Nonlinear Science and Numerical Simulation, vol. 39, 2016, pp. 396-410; Applied Mathematics, №8, 2017, 1715-1744) kasr tartibli kechikuvchi argumentli «yirtqich-o‘lja» sistemasining bifurkatsiyalarini boshqarishda foydalanilgan. Ilmiy natijalarning qo‘llanilishi «yirtqich-o‘lja» sistemasi uchun Xopf bifurkatsiyalarini samarali boshqarish imkonini bergan.

Yangiliklarga obuna bo‘lish