Mirzakabilov Ravshan Narkuziyevichning
Falsafa doktori (PhD) dissertatsiyasi himoyasi haqida e’lon
I. Umumiy ma’lumotlar.
Dissertatsiya mavzusi, ixtisoslik shifri (ilmiy daraja beriladigan fan tarmog‘i): «Sobolev fazosida optimal ayirmali formulalar», 01.01.03–Hisoblash matematikasi va diskret matematika (fizika-matematika fanlari).
Dissertatsiya mavzusi ro‘yxatga olingan raqam: B2019.2.PhD/FM342.
Ilmiy rahbar: Shadimetov Xolmatvay Maxkambayevich, fizika-matematika fanlari doktori, professor.
Dissertatsiya bajarilgan muassasa nomi: O‘zR FA V.I.Romanovskiy nomidagi Matematika instituti.
IK faoliyat ko‘rsatayotgan muassasa nomi, IK raqami: O‘zbekiston Milliy universiteti huzuridagi DSc.03/30.12.2019.FM.01.02 raqamli ilmiy kengash.
Rasmiy opponentlar: Hayotov Abdullo Raxmonovich, fizika-matematika fanlari doktori, professor; Xudoyberganov Mirzoali Urazaliyevich, fizika-matematika fanlari doktori, dotsent.
Yetakchi tashkilot: Termiz davlat universiteti.
Dissertatsiya yo‘nalishi: nazariy va amaliy ahamiyatga molik.
II. Tadqiqotning maqsadi oddiy differensial tenglamalarni taqribiy yechish uchun oshkor va oshkormas optimal ayirmali formulalarni qurish va differensiallanuvchi funksiyalar sinflarida ularning xatolik funksionali normalarini hisoblashdan iborat.
III. Tadqiqotning ilmiy yangiligi quyidagilardan iborat:
Sobolev fazosida har qanday uchun ayirmali formula xatolik funksionali normasi kvadratining ko‘rinishini ushbu funksionalning ekstremal funksiyasidan foydalanib topilgan;
optimal ayirmali formulaning koeffisientlari uchun Viner – Xopf tipidagi tenglamalar sistemasi olingan, hamda ushbu sistema yechimining mavjudligi va yagonaligi isbotlangan;
Sobolev fazosida har qanday uchun optimal ayirmali formulalarni qurish algoritmi differensial operatorning diskret analogidan foydalaninb ishlab chiqilgan;
va fazolarida Adams tipidagi optimal ayirmali formulalar qurilgan hamda ushbu ayirmali formulalarning koeffisiyentlari yordamida xatolik funksionali normalarining kvadratlari hisoblangan.
IV. Tadqiqot natijalarining joriy qilinishi:
Sobolev fazosida oddiy differensial tenglamalarni taqribiy yechish uchun optimal ayirmali formulalarni qurish bo‘yicha olingan ilmiy natijalar asosida:
Sobolev fazosida har qanday uchun ayirmali formula xatolik funksionali normasi yordamida olingan bahodan OT-F4-01 – “Qovushqoq suyuqlik oquvchi ko‘p qatlamli kompozit quvurlar egri chiziqli bo‘laklarining harorat va dinamik yuklanishlar ta’sirida chiziqli bo‘lmagan dinamik kuchlanish-deformatsiya holatini o‘rganish usullarini ishlab chiqish va nazariyasini rivojlantirish” fundamental loyihasida uch qavatli qoplama quvurlarining atrof-muhit bilan o‘zaro ta’sirini ko‘rib chiqish bilan bog‘liq muammolarni hal qilish uchun foydalanilgan (Toshkent kimyo-texnologiya institutining 2022 yil 17 yanvardagi 1/01-86-sonli ma’lumotnomasi). Natijada, elastik va qovushqoq elastik uch qatlamli qobiqsimon elementlardan tashkil topgan quvurning tebranishlari rezonans sohasida oldingi mavjud bo‘lgan, amaliyotda qo‘llanilayotgan metodikani dissipativ mexanik sistemalar uchun o‘rinli bo‘lmasligini hisobga olib, uni yangilashga va nazariyani rivojlantirishga imkon bergan;
Sobolev fazosida optimal ayirmali formulalar koeffisiyentlari uchun olingan Viner – Xopf tipidagi tenglamalar sistemasining analitik yechimidan OT-Atex-2018-340-“Ikki tezlikli muhit dinamikasining amaliy geofizik masalalarini nazariy va sonli tadqiq qilish” amaliy loyihasida nazariy va amaliy geofizik masalalarga kiritilgan differensial tenglamalar yechimini ikki tezlikli dinamik muhitda taqribiy hisoblashda foydalanilgan. (Qarshi davlat universitetining 2022-yil 19 dekabrdagi 04/5168-sonli ma’lumotnomasi). Ilmiy natijalarning qo‘llanilishi geologiya va geofizika masalalarini yechish uchun yangi optimal algoritmlar qurish imkonini bergan.