Мухамадиев Фарход Ғофуржоновичнинг
фалсафа доктори (PhD) диссертацияси ҳимояси ҳақида эълон
I. Умумий маълумотлар.
Диссертация мавзуси, ихтисослик шифри (илмий даража бериладиган фан тармоғи номи): «Компакт элементли тўла занжирланган системалар фазоларининг кардинал инвариантлари», 01.01.04–Геометрия ва топология (физика-математика фанлари).
Диссертация мавзуси рўйхатга олинган рақам: В2017.1.PhD/FM14.
Илмий раҳбар: Бешимов Рўзиназар Бебутович, физика-математика фанлари доктори, доцент.
Диссертация бажарилган муассаса номи: Ўзбекистон Миллий университети.
ИК фаолият кўрсатаётган муассаса номи, ИК рақами: Ўзбекистон Миллий университети, Математика институти ҳузуридаги DSc.27.06.2017.FM.01.01 рақамли илмий кенгаш асосидаги бир марталик илмий кенгаш.
Расмий оппонентлар: Чилин Владимир Иванович, физика-математика фанлари доктори, профессор; Давлетов Давронбек Эгамберганович, физика-математика фанлари номзоди.
Етакчи ташкилот: Қарақалпоқ давлат университети.
Диссертация йўналиши: назарий аҳамиятга молик.
II. Тадқиқотнинг мақсади: тўла занжирланган системалар фазоларининг топологик ва кардинал инвариантларини ўрганиш ва берилган фазонинг кардиналлари билан устма-уст тушиш шартларини топишдан иборат.
III. Тадқиқотнинг илмий янгилиги:
ихтиёрий чексиз T1-фазо учун ld(X)=ld(expnX)=ld(expwX)= ld(expcX) тенглик исботланган;
X ва NcX фазоларнинг зичлиги, p-салмоғи, кучсиз зичлиги, p-тўрли салмоғининг ўзаро тенг бўлиши исботланган;
тўғри чизиқдаги Хаттори фазосининг ҳамда унинг супер кенгайтмасининг спрэди, наслий p-салмоғи, наслий Шанин сони, наслий Суслин сони, наслий калибри, наслий олдкалибри, наслий экстенти тенг эмаслиги кўрсатилган;
l(t2) топология l(t1) топологияга нисбатан жоиз давомлаштириш бўлиши учун t2 топология t1 топологияга нисбатан жоиз давомлаштириш бўлиши зарур ва етарли эканлиги исботланган;
N(t2) топология N(t1) топологияга нисбатан жоиз давомлаштириш бўлиши учун t2 топология t1 топологияга нисбатан жоиз давомлаштириш бўлиши зарур ва етарли эканлиги исботланган;
тўғри чизиқдаги Хаттори фазосининг ихтиёрий қисм тўплами учун зичлик, кучсиз зичлик, Суслин сони, p-салмоғи, характери, p-характери, Шанин сони, олд Шанин сони, теснотаси, Линделёф сони, экстенти саноқли бўлиши исботланган;
exp(t2) топология exp(t1) топологияга нисбатан жоиз давомлаштириш бўлиши учун t2 топология t1 топологияга нисбатан жоиз давомлаштириш бўлиши зарур ва етарли эканлиги исботланган.
IV. Тадқиқот натижаларининг жорий қилиниши:
T1-фазоларда тўла занжирланган системалар фазоларининг кардинал инвариантларини таққослаш 15-01-05369 рақамли грант лойиҳада ковариант функторларнинг кардинал инвариантларини таққослаш масалаларини ечишда фойдаланилган (Москва давлат университетининг 2017 йил 1 ноябрдаги маълумотномаси). Илмий натижаларнинг қўлланилиши тихонов фазоларидаги ковариант функторларнинг кардинал инвариантлари масалаларини ечиш имконини берган;
тўла занжирланган системалар фазоларининг жоиз давомлаштириш хоссаси сақланишининг зарур ва етарлилик шартларини топиш «Равномерная топология и равномерно непрерывные отображения и их приложения в топологической алгебре и функциональном анализе» грант лойиҳасида текис топологик фазоларнинг кардинал инвариантларини таққослаш масалаларини ечишда фойдаланилган (Қирғизистон Миллий университетининг 2017 йил 1 ноябрдаги маълумотномаси). Илмий натижаларнинг қўлланилиши текис топологик фазолар ва текис узлуксиз акслантиришларнинг топологик инвариантлари масалаларини ечиш имконини берган.